radioactive decay - significado y definición. Qué es radioactive decay
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es radioactive decay - definición


Radioactive decay         
  • [[Alpha particle]]s may be completely stopped by a sheet of paper, [[beta particle]]s by aluminium shielding. [[Gamma ray]]s can only be reduced by much more substantial mass, such as a very thick layer of [[lead]].
  • 50px
  • Taking an X-ray image with early [[Crookes tube]] apparatus in 1896. The Crookes tube is visible in the centre. The standing man is viewing his hand with a [[fluoroscope]] screen; this was a common way of setting up the tube. No precautions against radiation exposure are being taken; its hazards were not known at the time.
  • <sup>137</sup>Cs decay scheme showing half-lives, daughter nuclides, and types and proportion of radiation emitted
  • Example of diurnal and seasonal variations in gamma ray detector response.
  • Gamma-ray energy spectrum]] of uranium ore (inset). Gamma-rays are emitted by decaying [[nuclide]]s, and the gamma-ray energy can be used to characterize the decay (which nuclide is decaying to which). Here, using the gamma-ray spectrum, several nuclides that are typical of the decay chain of <sup>238</sup>U have been identified: <sup>226</sup>Ra, <sup>214</sup>Pb, <sup>214</sup>Bi.
  • half-lives]] have elapsed.
  • Radioactivity is characteristic of elements with large atomic numbers. Elements with at least one stable isotope are shown in light blue. Green shows elements of which the most stable isotope has a half-life measured in millions of years. Yellow and orange are progressively less stable, with half-lives in thousands or hundreds of years, down toward one day. Red and purple show highly and extremely radioactive elements where the most stable isotopes exhibit half-lives measured on the order of one day and much less.
  • Pierre and Marie Curie in their Paris laboratory, before 1907
  • n<sup>0</sup>]] emissions, EC denotes [[electron capture]]).
  • Graphic showing relationships between radioactivity and detected ionizing radiation
  • Types of radioactive decay related to neutron and proton numbers
PROCESS BY WHICH AN UNSTABLE ATOM EMITS RADIATION
Radioactivity; Radioactive; Decay mode; Nuclear decay; Nuclear Decay; Activity (radioactivity); Subnuclear transformation; Atomic Decay; Atomic decay; Nuclear Radiation; Becquerel Rays; Radioactive Decay; Radioactivite; Decay rate; Total activity; Elements, radioactive; Radio activity; Radiation, nuclear; Change of decay rate; Radiation, Radioactivity; Nuclear disintegration; Radioelement; Decay, radioactive; Table of radioactive decay; Decay law for radioactivity; Radioative process; Radioactive process; Radioactive decay law; Szilard–Chalmers effect; Szilard-Chalmers Effect; Solar influence on radioactive decay; Quantum decay; Szilard-Chalmers effect; Decay activity; Radioactive disintegration
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive.
radioactivity         
  • [[Alpha particle]]s may be completely stopped by a sheet of paper, [[beta particle]]s by aluminium shielding. [[Gamma ray]]s can only be reduced by much more substantial mass, such as a very thick layer of [[lead]].
  • 50px
  • Taking an X-ray image with early [[Crookes tube]] apparatus in 1896. The Crookes tube is visible in the centre. The standing man is viewing his hand with a [[fluoroscope]] screen; this was a common way of setting up the tube. No precautions against radiation exposure are being taken; its hazards were not known at the time.
  • <sup>137</sup>Cs decay scheme showing half-lives, daughter nuclides, and types and proportion of radiation emitted
  • Example of diurnal and seasonal variations in gamma ray detector response.
  • Gamma-ray energy spectrum]] of uranium ore (inset). Gamma-rays are emitted by decaying [[nuclide]]s, and the gamma-ray energy can be used to characterize the decay (which nuclide is decaying to which). Here, using the gamma-ray spectrum, several nuclides that are typical of the decay chain of <sup>238</sup>U have been identified: <sup>226</sup>Ra, <sup>214</sup>Pb, <sup>214</sup>Bi.
  • half-lives]] have elapsed.
  • Radioactivity is characteristic of elements with large atomic numbers. Elements with at least one stable isotope are shown in light blue. Green shows elements of which the most stable isotope has a half-life measured in millions of years. Yellow and orange are progressively less stable, with half-lives in thousands or hundreds of years, down toward one day. Red and purple show highly and extremely radioactive elements where the most stable isotopes exhibit half-lives measured on the order of one day and much less.
  • Pierre and Marie Curie in their Paris laboratory, before 1907
  • n<sup>0</sup>]] emissions, EC denotes [[electron capture]]).
  • Graphic showing relationships between radioactivity and detected ionizing radiation
  • Types of radioactive decay related to neutron and proton numbers
PROCESS BY WHICH AN UNSTABLE ATOM EMITS RADIATION
Radioactivity; Radioactive; Decay mode; Nuclear decay; Nuclear Decay; Activity (radioactivity); Subnuclear transformation; Atomic Decay; Atomic decay; Nuclear Radiation; Becquerel Rays; Radioactive Decay; Radioactivite; Decay rate; Total activity; Elements, radioactive; Radio activity; Radiation, nuclear; Change of decay rate; Radiation, Radioactivity; Nuclear disintegration; Radioelement; Decay, radioactive; Table of radioactive decay; Decay law for radioactivity; Radioative process; Radioactive process; Radioactive decay law; Szilard–Chalmers effect; Szilard-Chalmers Effect; Solar influence on radioactive decay; Quantum decay; Szilard-Chalmers effect; Decay activity; Radioactive disintegration
n.
1) to emit, generate, produce radioactivity
2) (a) dangerous (level of) radioactivity
radioactivity         
  • [[Alpha particle]]s may be completely stopped by a sheet of paper, [[beta particle]]s by aluminium shielding. [[Gamma ray]]s can only be reduced by much more substantial mass, such as a very thick layer of [[lead]].
  • 50px
  • Taking an X-ray image with early [[Crookes tube]] apparatus in 1896. The Crookes tube is visible in the centre. The standing man is viewing his hand with a [[fluoroscope]] screen; this was a common way of setting up the tube. No precautions against radiation exposure are being taken; its hazards were not known at the time.
  • <sup>137</sup>Cs decay scheme showing half-lives, daughter nuclides, and types and proportion of radiation emitted
  • Example of diurnal and seasonal variations in gamma ray detector response.
  • Gamma-ray energy spectrum]] of uranium ore (inset). Gamma-rays are emitted by decaying [[nuclide]]s, and the gamma-ray energy can be used to characterize the decay (which nuclide is decaying to which). Here, using the gamma-ray spectrum, several nuclides that are typical of the decay chain of <sup>238</sup>U have been identified: <sup>226</sup>Ra, <sup>214</sup>Pb, <sup>214</sup>Bi.
  • half-lives]] have elapsed.
  • Radioactivity is characteristic of elements with large atomic numbers. Elements with at least one stable isotope are shown in light blue. Green shows elements of which the most stable isotope has a half-life measured in millions of years. Yellow and orange are progressively less stable, with half-lives in thousands or hundreds of years, down toward one day. Red and purple show highly and extremely radioactive elements where the most stable isotopes exhibit half-lives measured on the order of one day and much less.
  • Pierre and Marie Curie in their Paris laboratory, before 1907
  • n<sup>0</sup>]] emissions, EC denotes [[electron capture]]).
  • Graphic showing relationships between radioactivity and detected ionizing radiation
  • Types of radioactive decay related to neutron and proton numbers
PROCESS BY WHICH AN UNSTABLE ATOM EMITS RADIATION
Radioactivity; Radioactive; Decay mode; Nuclear decay; Nuclear Decay; Activity (radioactivity); Subnuclear transformation; Atomic Decay; Atomic decay; Nuclear Radiation; Becquerel Rays; Radioactive Decay; Radioactivite; Decay rate; Total activity; Elements, radioactive; Radio activity; Radiation, nuclear; Change of decay rate; Radiation, Radioactivity; Nuclear disintegration; Radioelement; Decay, radioactive; Table of radioactive decay; Decay law for radioactivity; Radioative process; Radioactive process; Radioactive decay law; Szilard–Chalmers effect; Szilard-Chalmers Effect; Solar influence on radioactive decay; Quantum decay; Szilard-Chalmers effect; Decay activity; Radioactive disintegration
¦ noun the emission of ionizing radiation or particles caused by the spontaneous disintegration of atomic nuclei.
?radioactive particles.
Ejemplos de uso de radioactive decay
1. The package was contaminated with americium 241, a radioactive decay product of plutonium.
2. The microbe‘s energy source is the radioactive decay of nearby rocks, a process known as radiolysis.
3. Helium is produced by radioactive decay, and thus is evidence of how long the water had been underground.
4. The two Mars rovers, Spirit and Opportunity, sent up in 2003, had much smaller amounts of plutonium, which creates energy from natural radioactive decay.
5. Now a new model suggests ancient radioactive decay played a key role in shaping the moon‘s warm south pole region, where plumes of water vapor and ice crystals periodically vent.